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ABSTRACT 

Weapon systems and programs are becoming increasingly more dependent on 

software as a critical technology for the success of the programs. Along with this 

dependence on performance, the costs associated with software are becoming an 

increasing share of the life cycle costs of these weapon systems and programs.  Life cycle 

software costs are divided into two phases, development and maintenance.  There are 

numerous popular models to aid developers and independent estimators in predicting 

costs and schedules for software development.  Some of these models are open source, 

many others are proprietary.  These models are based on research performed on existing 

software systems and historical data. 

However, for software maintenance, there are far fewer models, research efforts, 

or collected data sets.  The Army’s term for software maintenance is post production 

software support.  This thesis describes how this support is currently funded, performed, 

and estimated.  The model presented could be adopted to manage support of Army 

ground combat systems. 

The major contribution of this thesis is furthering the understanding of the 

software maintenance support costs associated with weapon systems.  In addition to 

specific results on ground combat systems presented, the thesis provides insight into 

maintaining other large software-dependent systems and recommendations on further 

research in the field. 
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EXECUTIVE SUMMARY 

The cost to maintain software is largely unknown.  Historically, Post Production 

Software Support (PPSS) costs are estimated using simple scalars and analogies to 

previous systems.  This thesis explores the relationship between the size of a software 

project and the cost of maintaining the completed software over the lifetime of the 

project.  A data set on Army ground combat systems is analyzed.  The data set contains 

PPSS budgets contained in the years 2002-2013. 

This thesis researches appropriate variables for analysis, interprets the data, and 

comments on methodology of the analysis involved, as well as the allocated budgets.  

The analysis portion conducts t-tests to make inferences about similarities in the dataset, 

uses modeling software to determine the validity of the data, describes the data’s 

distribution, and suggests useful metrics to make comparisons between years represented 

in the data set.  In the absence of statistical evidence, a few reasonable assumptions are 

made based on knowledge obtained from relevant subject matter experts. 

It is difficult to make valid suggestions about what the data represents for 

individual weapon systems until the budgeted years are finalized and executed.  

However, this thesis contains three main conclusions.  First, that there is no statistical 

difference in the total annual resources (adjusted for inflation) budgeted for software 

maintenance on ground combat vehicles.  This means that there appears to be a set annual 

budget for each program.  The second observation is that annual amounts spent on 

software maintenance for ground combat vehicles follow a simple linear regression.  As 

expressed in the data, there is an estimated growth of $2.95 million dollars a year, or a 

5.06% rate of growth.  The third observation suggests that the more expensive software 

programs supporting ground combat systems are getting an increasing share of the total 

budget, leaving the smaller programs fighting for smaller shares of the allocations.   
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I. INTRODUCTION  

Software not developed with maintenance in mind can end up so poorly 
designed and documented that total redevelopment is actually cheaper 
than maintaining the original code. 

— U.S. Air Force's Software Technology Support Center, “Guidelines for 
Successful Acquisition and Management of Software-Intensive Systems” 
version 3.0 May 2000. 

A. THESIS OUTLINE 

This thesis will explore and determine the relationship between the size of a 

software project and the cost of maintaining the completed software over the lifetime of 

the project.  This thesis researches appropriate variables for analysis, interprets the data, 

and comments on methodology of the analysis involved, as well as the allocated budgets.  

The analysis portion conducts t-tests to make inferences about similarities in the dataset, 

compares metrics between years represented in the data set, and describes the data’s 

distribution.  In the absence of statistical evidence, a few reasonable assumptions are 

made based on knowledge obtained from relevant subject matter experts (SMEs).  The 

findings suggest what the data means to budget managers.  Lastly, conclusions are 

summarized and specific recommendations are discussed for further research. 

B. OBJECTIVE 

The objective of cost estimation is to collect and analyze historical data, apply 

quantitative models, techniques, tools, and databases, to predict the future cost of an item, 

program, or task.  The specific purpose of this thesis is to conduct initial research in the 

costs associated with post production software support.  Available data of current 

software support is analyzed, an interpretation is made of what the data represents, and 

recommendations are provided for policies and practices to obtain better data in order for 

more substantial research to be performed.  From the data available, a model is presented 

to estimate the costs of software support for follow on systems in the same domain. 
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C. BACKGROUND 

The development of software has become an increasingly important and 

expensive part of all major Department of Defense (DoD) acquisitions.  Additionally, the 

complete Life Cycle Cost (LCC) of software is becoming a larger share of the project’s 

total budget.  Therefore, the importance of managing the ongoing software development 

and maintenance and the capability to calculate the costs of software maintenance is 

becoming increasingly important. 

There are key differences between hardware and software systems.  These 

differences are in their development cycles, supporting phases of management, and how 

the risks of each type of system are managed.  One important aspect of software 

development is that software development delays cannot be mitigated by more money or 

resources.  In historical examples, a software program that falls behind in development 

will never catch up.  In fact, adding developers to a software program behind schedule 

has been demonstrated to actually prolong development time [1]. 

There has been much research on the costs to develop software.  There are many 

models, open source and proprietary, available to help project and plan the development 

process.  In comparison there are few tools to help project and plan the supporting effort 

needed to maintain software once it has already been fielded.  When problems arise in the 

weapon system’s functionality, warfighters submit requests for changes to the software 

known as “hotfixes.”  Software support facilities address the warfighters’ needs in the 

order requested, providing new releases of software to enhance usability.  When 

underfunded, these facilities adjust requests and priorities in order to fix the problems that 

their budgets allow. 

To understand why these risks are occurring in software, it is important to define 

the exact problem.  Why are program managers failing to account for risks associated 

with software?  The situation is concisely surmised in the Navy’s Open Architecture 

Computing Environment Design Guidance Version, published in 2004. 

A major characteristic of today’s computing industry is the fact that the 
technology base is changing and evolving rapidly.  This potentially 
provides great benefit in terms of a steadily improving price/performance 
ratio.  However, systems that are not designed to accommodate this rapid 
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change of the technology base can be quite costly to maintain over the life 
cycle.  Application source code not designed for portability should be 
modified, sometimes extensively, when it is ported to new networks, 
computers, operating systems, middleware, etc.  In some cases, the 
changes can be so extensive that redesign of the system may be necessary. 

Conversely, through proper use of standards and isolation layers that hide 
implementation details, it is possible to design components so that 
application source code can be ported across a wide variety of underlying 
computing technologies.  Achieving this objective requires exercising 
sufficient design and implementation discipline to forego use of vendor-
unique features.  This is sometimes difficult since vendor-unique features 
may confer a modest or even substantial advantage in performance or in 
initial cost; however, the long-term cost of repeated use of non-portable 
source code to a succession of technology bases often eventually far 
exceeds any initial cost savings or performance gains [2]. 

The Navy defines adaptability, portability, and discipline in design and 

implementation as the major characteristics of cost control.  The Navy’s guide is 

comprehensive, but does not provide analysis of the current software environment.  What 

happens when a software program isn’t portable or the implementation isn’t disciplined?  

Without a proper perspective it is easy to dismiss software development as non-critical 

issues in a program’s development.  Three recent software projects, two failures and one 

success, provide insight on the importance of quality software.  The Denver airport 

originally scheduled to open in 1993 was delayed over 18 months at a cost of over $190 

million due to software and automation delays.  In 1996, the European Ariane 5 rocket on 

its maiden flight was destroyed due to a software error, carrying $500 million in payload.  

In contrast, the developers that maintain the on-board code for NASA Space Shuttle 

experience an error rate in their code orders of magnitude less than an equivalent 

commercial center.  More details are available on these examples in Appendix A. 

Most software support for DoD’s weapon systems is performed at Software 

Engineering Centers (SEC).  These centers produce technical documentation and data for 

software systems.  Historically they release a new version every 18 months.  In reality, 

they also serve as one stop shopping for many software needs dictated by their parent 

organizations.  This may range from providing training or IT services to writing web 

pages.  They provide the logistics support to ensure weapons systems are uploaded with 
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new software.  They field requests and perform maintenance typically viewed as 

corrective, defective, adaptive, or enhancement.  There may be problems with the original 

software, or they may correct hardware deficiencies that are more efficiently addressed 

with software solutions.  They perform regression testing, testing the existing codes’ 

functionality over the range of operation, on each change they make.  This testing is 

performed to prevent the type of errors that led to the Adriane 5 disaster.  Specifications 

detailing the tests to be performed may run thousands of pages [3]. 

To discern what it costs to run software on a weapon system, it’s important to 

look at the base case.  What does it cost to run any weapon program?  Typically long 

term planners such as an oversight committee or programming office review the full life 

cycle cost for a particular system.  Life cycle costs are broken down into stages.  For 

hardware, the DoD 5000 acquisition model identifies these separate stages: research and 

development, production, and operation and support.  But for software, the phases are 

development, post development software support, and post production software support.  

In determining the total LCC, analysts use different estimation techniques to project the 

costs in each of these phases. 

For hardware items such as naval vessels, aircraft, and ground combat vehicles, 

cost estimating tools have been developed over time with historical precedence.  

Typically one of four techniques is employed to arrive at an estimate.  The most accurate 

estimates are made from extrapolations of actual data.  A recent Government 

Accountability Office (GAO) estimate calculated the cost for a new F-22 Raptor at $166 

million [4].  This result is based upon real production data from the previous years.  For 

this platform in particular, adjustments were made for changes being performed to 

strengthen the airframe.  In a similar manner, the aircraft’s operation and support costs 

can be calculated from available data.  Extrapolation from actuals is the preferred 

technique because it produces good estimates (low variance) and analysts can present 

their figures to decision makers with a high degree of confidence. 

A second technique, parametric estimates, is utilized for less mature programs.  

The estimate is based on known physical and performance characteristics of the item in 

question.  This is applicable on many military systems such as missiles where actual 
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production costs have been observed on properties such as length, diameter, weight, and 

thrust.  Parametric estimates are attractive because they can be performed quickly and are 

relatively easy to interpret for anyone with a statistical or engineering background. 

A third estimation technique is known as engineering build up.  This method 

attempts to find the sum of the costs from the breakdown of all work performed in the 

construction of a hardware item.  Of all cost estimation techniques, engineering build up 

is the most expensive and the most time consuming to produce.  However it is preferred 

for some systems such as naval vessels, where the historical data on work breakdowns is 

rich and each hardware unit is unique or may be constructed during unique 

circumstances. 

In the absence of quality data to produce extrapolations, a parametric estimate, or 

build up the cost from its separate parts, the fourth technique is to make an analogy to 

previous weapon systems.    For example, the F-35 Lightning II has a high degree of 

commonality with the F-22 Raptor.  Many of the life cycle costs for the F-35 have been 

based on the F-22 [5].  In fact, this was a contributing factor in awarding the contract to 

Lockheed.  Additionally, estimates for the Stryker, originally planned as an interim 

solution, were based on previous versions of the LAV. 

Historically, cost estimation of software development has proven to be a difficult 

problem. There are numerous models used for software cost estimation, but they have 

many similarities.  Well known models base their estimates using three basic steps. 

• First they attempt to define the project’s size. 

• Next they aim at determining the software developers’ productivity; which 
has a high degree of variability and is generally a function of available 
programmers. 

• Lastly, estimators attempt to determine how much a programmer costs. 

When trying to correctly size a program, most models approximate project size by 

counting the Source Lines of Code (SLOC).  A SLOC is an executable statement as 

defined in the context of the language it was written in.  Blank lines, comment lines, or 

lines with simply an “if” statement or an open bracket would not count. 

Some models try to break down a project into a number of function points (FP).  

An FP is defined as one of five types of simple function operations: input, output, 
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inquiry, file, or interface operation.  Essentially the idea is the same; how big is the 

program in basic building blocks? 

Analysis of historical projects has show that SLOC is not by itself a good 

indicator of project length.  One reason is that no developer writes a software program 

using entirely new code.  In some cases it may be faster and more efficient to incorporate 

preexisting code.  Sometimes code is divided into different categories that define the 

level of effort required to write it.  Such code is termed “redesigned,” “reimplemented,” 

or “retest.” Redesigned code is utilized that was created elsewhere, but requires some 

reengineering or test work. 

 

SLOC = NewSize+ExistingSize× (0.4×Redesign+0.25×Reimpl+0.35×Retest)
 

Reimplemented code is from previous versions, rewritten to correspond to new 

data requirements.  The “retest” code may simply be the amount of code that undergoes 

regression testing.  The contractor may use purchased code known as Commercial Off 

The Shelf (COTS) software.  This additionally implies the need to write “glue” code 

which simply incorporates COTS or other code within the final product.  Finally there 

will be some actual new code that was developed from scratch.  As might be expected, 

different predictive models end up using different labeling schemes, such as “organic,” 

“embedded,” or “semi-detached.” 

Typically software estimation models use simple linear formula to determine total 

SLOC.  For maintenance estimates, similar methodologies are used.  Some analysts in the 

cost estimation community do not like this approach.  The data that these models base 

their estimations upon may be small, from a unique domain, very different, or very 

proprietary.  The suspicion is that the models are over-fit and that with simple 

manipulation users can produce whatever estimates they desire.  For proper estimates, 

analysts prefer developing models based on available data, rather than relying on 

empirical scalars drawn from data that is unavailable to them. 

Once the system has been appropriately sized, estimation models then make 

determinations on the software’s complexity and the developer’s effectiveness to 

determine productivity.  Effectiveness is largely determined by the Capability Maturity 
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Model (CMM) score, a widespread metric developed by Carnegie Mellon University’s 

Software Engineering Institute (SEI).  SEI was established in 1984 as a federally funded 

research and development center.  CMM scoring is on a five point scale.  Rather than just 

an evaluation, CMM is an ongoing process that has been proven to substantially increase 

productivity of software development.  Pioneered in the early 1990s, currently all 

software companies competing for DoD contracts will have a CMM score in order to 

place a bid.  For complex systems such as FCS, a CMM rating of three was determined to 

be the minimum in order to simply place a bid.   Estimating their own software 

development time is a mandatory quality assurance step contractors must accomplish in 

order to initially receive any type of CMM score.  

Using these rough parameters for size and productivity, the algorithms perform a 

head-count on the number of developers and determine the duration and cost for the 

software development.  System Evaluation and Estimation of Resources - Software 

Estimating Model (SEER-SEM), is the most popular proprietary model in use today.  The 

main advantage SEER-SEM has over other estimators is that the model comes with a 

proprietary database of thousands of completed software projects.  From an analyst’s 

perspective, the main difference between estimating software development and software 

support is that there are virtually no models, databases, or research efforts on which 

software support models can be built. 

The first widely used estimator was the Cost Constructive Model (COCOMO), 

designed by Dr. Barry Boehm in 1981.  The purpose of the model was to predict the 

number of man months necessary to complete software development.  The model was 

constructed on data from 60 projects at TRW ranging from 20,000 to 100,000 SLOC.  

The COCOMO model has been updated and is still in wide use today.  While the 

COCOMO model was better than any previous tool, the accuracy of the results were was 

poor.  A study using early versions of COCOMO found that average error was over 600 

percent between predicted and actual development effort [6].  High estimation error is not 

necessarily an indicator of poor estimation tools.  Errors may be due to high estimation 

complexity and insufficient cost control within the program.  But clearly 600 percent 

average error is not an acceptable standard!  It has been suggested that an acceptable 
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model would produce predicted costs within 25 percent of actual costs 75 percent of the 

time [7].  The most risky software programs are usually large, complex, incorporate new 

technology, or require additional integration from subcomponents.  In all phases, 

especially in regard to software development, FCS exhibits each of these properties.  A 

brief synopsis of FCS development helps to explain the importance of good software 

design. 

The single largest DoD project under development is the Army’s FCS.  Its LCC is 

estimated to exceed the LCCE of the Joint Strike Fighter.  The requirements and number 

of platforms continue to change, but in late 2006 the program involved new development 

of 9 Manned Ground Vehicles (MGVs) mostly from the same chassis, 6 Unmanned 

Ground Vehicles (UGVs), 5 Unmanned Air Vehicles (UAVs), and 4 Unmanned Ground 

Sensors (UGSs). In addition to over 20 vehicles and sensors being developed with their 

associated software, FCS requires an overarching architecture for communication and 

integration called the System of Systems Common Operating Environment (SoSCOE). 

One indicator of software complexity is the wide range of software domains to 

consider.  Current estimation models use different coefficients corresponding to different 

types of software code (user interfaces, data-link software, crypto, UAV software, ground 

manned and unmanned systems software, etc.) to estimate the final SLOC.  The F-22 

software development effort is metered out to 20 different contractors.  Contractors have 

learned that SLOC equates to money.  Often contractors maintain high estimates in order 

to pay for overheads that do not directly contribute to the contract.  When analyzing the 

software support efforts that are performed by DoD it is crucial to focus on the largest 

programs.  There are numerous reasons why this is the case.  Like many other acquisition 

activities, the smaller software programs are often better run in terms of costs, 

performance, and schedule.  Large software efforts invariably contain all the risky cost 

multipliers of complexity, growth, and integration.  Lastly, it is the large programs that 

need more software support, while for smaller programs the delivered code may not have 

any requests for changes or releases of new versions. 

In 2006, Army Chief of Staff General Schoomaker insisted that the entire FCS 

program stay within its $120 billion budget [8], yet the 2006 CAIG estimate places FCS 
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development at $300 billion.  Estimates for the LCC continue to grow and the schedule 

continues to slide. A 2004 GAO report surmises the difficulties in FCS development:   

At conflict are the program’s unprecedented technical challenges and time. 
At a top level, the technical challenges are: development of a first-of-a-
kind network, 18 advanced systems, 53 critical technologies, 157 
complementary systems, and 34 million lines of software code [9]. 

The program’s complexity is also displayed by the amount of subcontractors 

involved in developing software for FCS, listed in Appendix B.   

Determining who is writing the software is an on-going challenge, just as 

determining the level of effort required to field FCS.  As early as 2003, according to both 

Congressional and CAIG sources, the software portion of the FCS was estimated at 

totaling between 32 and 33.7 million SLOC.  There are no software programs that are 

close to the unprecedented size of FCS.  By comparison, the Navy’s Aegis system, Air 

Force’s entire F/A-22 program, and NASA’s International Space Station, each run at 

about 4.1 million SLOC.  This makes the total FCS software development effort 

described in the Cost Analysis Requirement Description (CARD) ten times larger than 

any software program the U.S. government has ever fielded.  The F-22’s software design 

problems are detailed in Appendix C for comparison.  Past CAIG estimates have priced 

FCS software development at $7-9 billion, with the software support at around $12.5 

billion ($500 million a year).  Given this variance in attempting to estimate production 

costs, developing accurate estimates for maintenance LCC remains a major challenge. 
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II. DATA AND METHODOLOGY 

A. DATA SET 

A database on Post Production Software Support (PPSS) of weapon systems 

under the Army’s Tank-Automotive Command (TACOM) was provided by the Army’s 

G-4, DALO-RIL (Resource Integration Division), The Pentagon.  The database was 

acquired for this thesis by Mr. Walt Cooper, a CAIG analyst with the Office of the 

Secretary of Defense, Programs Analysis and Evaluation (OSD PA&E).  It is crucial to 

understand that this database represents funding requirements/projections.  It is not data 

of actual expenditures spent on the associated systems, which is largely untraceable with 

the data collection efforts currently employed.  Prior to entering this phase of the life 

cycle, the software developers for each system have had largely unique funding support.  

They have had different priorities from their program managers, fallen under different 

program executive offices, and may have had multiple sources of funding from 

supplementals, based on their contract terms, or other contingencies. 

The data was contained on a Microsoft Excel spreadsheet, and needed 

considerable normalizing to be useful.  Program Office Memorandum (POM) and OP29 

figures were represented as individual sheets.  Row entries corresponded to particular 

software programs.  Column entries contain may fields of varying importance, most of 

which contained categorical data.  The most vital data fields delineated the resources 

requested by the program, the amount funded (planned, not actual), which POM or OP29 

of the request, year of the request, EINOMEN (a word description of the system), and a 

PRON (a unique identifier containing the year and weapons system information). 

For the associated weapon systems found in the TACOM database, density data 

(i.e., the number of units of the system) was obtained from the Army’s Operating and 

Support Management Information System (OSMIS).  OSMIS density figures were 

configured to annual quantities.  Annual figures were obtained for the Abrams Main 

Battle Tank (M1A1s, M1A2s), Bradley Fighting Vehicle Systems (M2A1, M2A2, 

M3A2), Paladins (M109A6), Strykers, and Wolverines (XM104).  OSMIS allows for a 
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variety of options of data retrieval.  For these purposes, the total number of vehicles in 

service in a given year was retrieved by querying over the major combatant commands 

and summing the results.  These data were used to formulate hypotheses of whether the 

number of vehicles in service had an effect on programmed software maintenance costs. 

B. VARIABLE SELECTION AND VALIDATION 

The TACOM PPSS database contains 49 columns of data. The bulk of analysis 

was performed on the columnar data sets, namely on the planned funding amounts, year 

of request, and weapon system that each software project mapped to.  The validity of 

discarding these columns was analyzed using SPSS (Statistical Package for the Social 

Sciences) Clementine version 11.1.  SPSS was chosen because it handles categorical data 

well, while other software tools require transformations.  Thirty-one columns displayed 

singular values or contained anomalous entries such as the username of the person 

entering the data, or a program identifier unique for each data point.  These columns 

could not be included when Clementine was run to fit a model to the data, because they 

contained no real information.  Based on inspection, it appeared that these remaining 

columns would not be statistically useful in predicting amounts requested or funded for 

software programs. 

Three approaches were taken to determine if the remaining columns contained 

valid information.  The results of the three approaches were compared. 

• First, a regression tree was run in SPSS, to determine if the column data 
could predict whether the amount requested for a program fell above or 
below the median for the data set.  Tree models are useful to describe 
some data sets because they are simple to construct and readily 
interpretable. 

• More powerful statistical methods were used to determine if there was 
useful information contained in these apparently inadequate columns of 
data.  We used a neural network since they are well implemented in SPSS 
and can quickly construct good models on difficult data sets where other 
modeling methods fail.  The weakness of neural networks is that they are 
difficult to interpret, especially as the number of parameters and layers 
increase. 
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• Third, a model was created in SPSS from a logistic regression.  The 
regression was run to predict if each program’s requested monetary 
amount would fall above or below the population median. 

Regression trees can create very flexible models but are susceptible to over-

fitting.  The model starts with all data points in a single node.  It is an iterative process 

where the data is split into successive binary branches.  The branching algorithm will 

attempt to partition the data using every possible binary split on every field.  Typically, 

the algorithm chooses to split the data into two parts, minimizing the sum of squared 

deviations from the mean in the separate parts.  Numerically, in each resulting node the 

algorithm minimizes deviance: 

( )2y y−∑  

The algorithm proceeds until a sensible stopping point is reached, or splits can no 

longer be made. 

The neural network was constructed to make the same prediction that was made 

with the tree model and logistic regression: whether the program’s requested amount fell 

above or below the mean.  Neural networks are implemented in SPSS using 3 types of 

nodes: inputs, outputs, and hidden nodes.  The network consists of two sets of weighted 

arcs; one set from every input node to every hidden node and a second set from every 

hidden node to every output node.  The value of any observation is determined by a three 

step process, as depicted in Figure 1.  First, the product of the input node-hidden arc 

weights are summed.  Next, an “activation function” is applied. 
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Figure 1.   A sample neural network. 

T is computed as the summation of input node-arc weight products into each 

hidden node.  Last, the first step is repeated over the next set of nodes and arcs.  That is, 

the hidden node-output arc products are summed.  The simplest neural network is one 

having just two layers, input and output nodes, where the value of an observation is the 

activation function applied to each input node-arc product.  This is just a simple logistic 

regression. 

The three resulting models were used to determine if the columns contained data 

for worthwhile analysis, apart from the budgeted amounts.  The logistic regression 

performed almost as badly the naïve model, which would be to state that amount of every 

budget line is above the median.  The neural network was able to predict with over 80% 

accuracy which program lines would fall above the mean.  However, the regression tree 

actually outperformed the neural network, achieving the highest classification rate.  The 

reason for this is that the individual budget amounts correspond highly to four distinct 

column variables which describe where the software maintenance is performed and the 

size of the program.  These specific results are contained in Appendix D. 
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C. METHODOLOGY 

All figures were converted into base year 2005 dollars.  Inflation indices were 

obtained from the FY2008 Naval Center for Cost Analysis Inflation Calculator.  The 

Other Procurement, Navy (OPN) appropriation element was used.  Parametric and non-

parametric techniques were used to analyze the data.   Student t-tests were performed to 

compare the total annual amounts spent on software support.  A separate calculation was 

performed to compare the rate of increase in spending from year to year.  The t-values 

were calculated and adjusted for sample size and variance. 

The fiscal year of request, descriptive name (coded as EINOMEN), unique 

program identifier (PRON), amount funded, and total amount requested were extracted 

from the complete data set.  Microsoft Visual Basic for Applications (VBA) procedures 

were written in order to sort the data, extract duplicates, and enable some non-parametric 

analysis to be performed.  For most support programs in the TACOM data set, there is a 

stark difference between the amount funded and the amount requested.  In most years, the 

data set reflects that most programs received either all or none of the requested funds.  

We suspect that the reasons for this are: 

• The collection of programs are at different development states.  
Consequently, many have other lines of funding. 

• Some programs may be forecasted an amount for a given year, with the 
intent to invest those funds over a number of years.  This is known as a 
“level of effort” support.  It is acknowledged that most programs do not 
receive the necessary funds projected to provide full software support to a 
weapons system. 

For these reasons, the amount funded is not a reliable metric for analysis, 

particularly in years that have not been executed yet.  This amount is analyzed, but a 

higher fidelity is given to the amount of funds requested. 
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III. ANALYSIS 

A. T-TESTS 

Studentized t tests were calculated to make two comparisons.  T tests are utilized 

to test hypotheses about what the data represents.  In this case, we wanted to test whether 

the annual amounts of funding had similar means and variances between years.  If the 

metrics were similar, it would make sense to perform additional analysis, developing a 

model describing the changing budget amounts.  If the metrics were proved to be not 

similar, the thesis would focus on describing the differences, and interpreting what the 

differences represented. 

First, year-to-year comparisons were made of mean amounts requested, converted 

into Constant Year 2005 dollars (CY05$) using the Naval Center for Cost Analysis 

(NCCA) Inflation Calculator for FY08 Budget, Version 1, and the Other Procurement 

Navy (OPN) Index.  The t test required an adjustment, since the earlier reported years 

appeared in fewer POMs of this data set, while middle and later years appeared in most 

POMs.  The smallest year group, 2002, had just 33 programs reporting, while the largest 

number of programs was 72, reported in 2011.  It was assumed that the variances were 

heteroscedastic (or unequal), a reasonable conservative assumption given differing 

sample sizes.  Accordingly, the following adjustment was made: 

( ) ( )
1 2

1 2

2 2
1 2 1 1 2 2

X -X
1 2 1 2X -X

n -1 n -1X -X 1 1t=  where s =
s n n 2 n n

s s+ ⎛ ⎞
+⎜ ⎟+ − ⎝ ⎠

 

Figure 2.   Adjusted t for varying sample size and variance 

Second, year-to-year comparisons were made on the rate of increase in amounts 

requested.  Results from both sets of t-tests are contained in Appendix E.  The data  
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suggests that there is not enough to reject the hypothesis that the mean, variance, and rate 

of increase are the same from year to year.  Accordingly, the next phase of the analysis 

focused on modeling the annual amounts. 

B. ANNUAL AMOUNTS 

Analysis was performed to attempt to fit a model to the annual amounts budgets.  If 

the annual increase followed a predictable form, this information would be useful to 

planners and professionals.  A plot of the totals and a simple linear regression show the 

results in Figure 3. 
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Figure 3.   Annual Totals of TACOM Weapon Systems. 

The regression fit takes the following form with the resultant r-squared: 
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2

y = 3,040,000x + 55,200,000
R  = 0.596  

The fit simply states that the base year is budgeted for $55.2 million CY05, with an 

annual increase of just over $3 million.  A good r-squared value does not necessarily 

imply a good model (the model may simply over fit the data); however, a poor r-squared 

is sufficient evidence of a model that does not fit the data well. 

A simple second order polynomial provides a better fit and r-squared value, but 

there are reasons to assume that the yearly amount is increasing at a constant rate.  The 

total amounts appear to ramp up in the early years and decline in the last three years of 

the data set.  Seventy or more programs are represented in years 2009-2012, while only 

54 and 56 are reported in the last two years of the data set.  Likewise, the years 2002-

2004 only have 33, 45, and 44 distinct programs reporting respectively.  This is an 

artifact of the data set.  The POMs are from fiscal year 2003 through 2008.  Year groups 

in the middle are simply contained in more of these individual POMs, while early and 

end years are not. 

In order to create a better model predicting annual total amounts, an adjustment 

must be made to account for the varying sizes.  The data does not exist to make an 

accurate adjustment for this difference in sample size in different years.  Accordingly, an 

adjusted total was derived from the data, using reasonable assumptions.  Various methods 

were attempted.  Adding the median for each perceived missing value had no effect on 

the resulting linear regression.  Adding the mean resulted in a severe distortion.  The 

totals between the year 2002 and the year 2011 are not that different.  It appears that both 

years have many of the same expensive efforts budgeted.  The means, however, are quite 

different, since 2011 has over twice the amount of reporting programs.  The most 

tractable model takes the following form: 

( )max x .625y = n n X  + X−  
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Where maxn  is the maximum number of reported programs in all years, xn  is the 

number of reported programs in the given year, .625X  is the 62.5th percentile of the given 

year, and X  is the previously calculated total amount for the year.  The resulting plot of 

adjusted annual totals is depicted in Figure 4. 
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Figure 4.   Adjusted Annual Totals of TACOM Weapon Systems. 

The result is a reasonable approximation of the form the data would take, if all reported 

data from the early and late years was available.  The linear regression is essentially the 

same, but with better r-squared. 

2

y = 2,950,000x + 58,300,000 
R  = 0.840  

The choice of the 62.5th percentile is an admittedly arbitrary selection, but was 

made with consideration of the distribution of data.  The 62.5th percentile represents a 

reasonable compromise where the adjustment performs some significance, yet does not 
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perform a calculation out of scale in different years.  While the 50th percentile (the 

median) for this parameter had no effect, larger values such as the 75th percentile 

completely distorted the annual totals.  The reason for this is that the data follows a 

different distribution for different years.  For some years, the 75th percentile falls about 

the mean, while for others it does not.  Table 1 depicts annual totals, means, and the 50th, 

62.5th, and 75th percentiles.  Shaded cells correspond to values above the mean. 

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Total 44,221 54,469 124,211 123,488 68,707 71,001 81,047 94,439 84,995 87,051 73,998 74,922
Mean 1,340 1,210 2,700 2,205 1,165 1,224 1,266 1,330 1,214 1,209 1,370 1,338
X.5 112 102 103 118 115 150 151 163 188 215 233 264

X.625 370 319 257 233 209 210 211 235 336 357 634 932
X.75 1,119 1,089 1,501 1,100 877 953 1,649 1,415 992 1,884 2,087 1,996  

Table 1.   Budgeted Amounts in Thousands CY05$. 

In the first six years of the data set, the 75th percentile falls below the mean, but 

for five of the last six years the 75th percentile is above the mean.  The reason for this 

change is that the median changes dramatically between years.  Between 2002 and 2013, 

the annual budgeted median doubles, as depicted in Figure 5. 
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Figure 5.   Annual Medians of TACOM Weapon Systems. 

The expected median value is well fit for the database using a third degree 

polynomial.  However, there is no fundamental reason to believe that a third degree 

polynomial underlies the budgeting problem. 

3 2

2

y = -62.058x  + 375120x  - 8E+08x + 5E+11
R  = 0.9897  

As was discussed earlier, the suspiciously high r-squared suggests that the plotted 

medians is over fit by the polynomial function.  However, this distribution is reasonably 

well described with other functions, such as the exponential, which also fits the 

distribution better than a linear model.  The implications of the median are discussed in 

Chapter IV. 
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C. DATA DISTRIBUTION 

Developing a distribution that describes a dataset’s characteristics can be a useful 

tool in determining what the data represents.  After analyzing different functions for 

individual year groups, it was determined that the gamma distribution was the most 

informed choice of model.  The gamma distribution is typically used to model 

observations such as rainfall frequency [10], mean time to failure, and other lifetime or 

survival distributions.  The shape parameter affects the steepness and general form of the 

distribution.  For small values of the shape parameter, the distribution is extremely 

skewed.  For large values, the distribution becomes approximately normal.  The scale 

parameter impacts the spread of the distribution.  Small values will result in a model 

representing data that is close together.  For larger values, the distribution is more spread 

out.  The 2-parameter gamma distribution has expected value and variance of the 

following form: 

( ) ( ) 2E X                V Xρβ ρβ= =  

 

In the equations ρ  is the shape parameter and β  corresponds to scale.  With 

threshold as a third parameter, the expected value simply adds the threshold value to the 

ρβ  product.  This allows for a better fit of the data.  Threshold has no effect on the 

variance. 

 Figure 6 depicts one of the best fits for a 3-parameter gamma to the empirical 

cumulative distribution function (CDF) of a particular year, the year 2013. 
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Figure 6.   3-parameter Gamma distribution vs. Empirical CDF. 

The plotted track appears to follow the empirical distribution fairly well.  There 

are numerical methods to determine goodness of fit, but for this instance it is more easily 

interpreted by analyzing other attributes of the data set.  One such metric is the 

probability plot. 

 Figure 7 depicts the probability fit of the same gamma function to the dataset 

represented in 2013.  The distribution parameters, found in the legend, remain the same 

as in Figure 6. 
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Figure 7.   Small values outside the 95% CI, but large values are well modeled by the 
gamma with these values. 

The probability plot highlights three key features of the data set that are not 

readily apparent from the empirical CDF plot.  First, a large percentage of the data values 

are small and the gamma distribution overestimates the amount.  This is indicated by the 

number of red dots falling below the lower 95% CI band.  Second, while it appears that 

the model remains close for middling values, the model performs badly for this portion of 

the data.  This is indicated by the value approaching and breaching the upper 95% CI 

band near the 50th percentile.  Third, the data set does not appear to be normal or 

approximately normal.  This fact is apparent by the slight ‘S’ shape that the distribution 

of red dots takes. 

 These indicators of what form the data takes are reinforced by another view of the 

data, a simple histogram in Figure 8. 
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Figure 8.   The distribution is not well fit for small values, but the gamma approximates 
the long right tail well. 

The high left-hand peak overestimates what the histogram displays.  This 

reaffirms what the probability plot suggested, that the selected model is inaccurate for 

predicting the number of small values.  The right tail of the distribution highlights the 

source of the problem.  The model has made a computational trade off in the heavy left 

tail, so that it will fit the long right tail.  In order to discover a distribution that provided a 

better fit, the data was transformed with the logarithmic function. 

Data transformations are typically performed for one of three reasons: failures of 

normality, linearity, or homoscedasticity.  Also, data transformations are usually needed 

to prepare for regression analysis.  For regression analysis to be valid, the data must 

follow a normal distribution (expected mean and variance), be linear (a linear function 

can be applied to the data to predict an outcome), and homoscedastic (data in the sample 

have equal variances).  However, we are not comparing the budgeted amounts in the data 

set to a predicted amount.  In this case, the transformation was performed because the 
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data is out of scale with itself.  In each individual year, there are many small values, and 

the spread of values is orders of magnitude apart.  Figure 9 shows the plot of the 

transformed data, with the resulting gamma model and empirical CDF. 
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Figure 9.   Small values are better fit by the transformation. 

The prediction parameters in the legend have changed, which should be expected.  

The graph is not as aesthetically pleasing as the empirical CDF of the unaltered data.  

There appear to be larger differences between the given data and predicted distribution.  

However, analysis of the probability plot and histogram reveal this to be a better 

informed model.  Figure 10 depicts the probability plot. 
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Figure 10.   All small values within the 95% confidence bands. 

Virtually all of the observed data points fall within the 95% CI.  The model 

performs considerably better for smaller values.  In the untransformed histogram, the 

high peak for low values overestimated what the histogram displays.  This reaffirms what 

the probability plot suggested, that the selected model is inaccurate for predicting the 

number of small values.  While the gamma probability plot on the raw data performs well 

on large values at the expense of predicting small values well, the gamma on the 

transformed data has made a trade-off in the opposite direction.  This is depicted in 

Figure 11. 
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Figure 11.   A better fit for small values. 

It is possible to fit a distribution to each year represented in the TACOM 

database.  However, after performing separate fits on a few years contained in the dataset, 

it was determined that this is not a valid analysis.  The empirical distribution for 2013 

was chosen because it was one of the best fits of the available data.  While the 3-

parameter gamma fits the year 2013 well, the distribution performed poorly on other 

years.  It was observed that other distributions, such as the 3-parameter logistic and 3-

parameter lognormal, provided better fits for some individual years.  Results of attempts 

to find 3-parameter gamma fits for the individual years are contained in Appendix F.  

Fitting a distribution for one year did not yield any useful information in attempting to fit 

a successive year.  This analysis yielded no suggestions as to what is the distribution of 

data in years outside the data set, other than it would most likely be best fit by one of the 

many models used.  Fitting a distribution for the entire data set performed more poorly 

than any of the individual years.  The reason for this lack of fit is fairly interpretable.  
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Since the medians are different for individual years, it is expected that the distributions 

are indeed different.  We shouldn’t expect to find a better distribution to the entire data 

set, since each individual year has a heavy left tail.  Combining the data only exacerbates 

this fact, as show in Figure 12. 
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Figure 12.   Histogram of all budget lines in years 2002-2013. 

D. WEAPON SYSTEM DATA 

As previously displayed in Figure 5, the medians are different between years and 

are changing at a predictable rate.  Fitting a distribution to the entire data set loses this 

sophistication.  Most of the unique PRONs in the database map to a specific ground 

combat system, as described in the EINOMEN field.  By combining these budget lines, 

we can chart yearly budgets for the associated weapon systems.  The resulting annual 

budget by individual weapon system is depicted in Figure 13. 
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Figure 13.   Annual Totals by Individual Weapon Systems. 

The “ALL OTHERS” data field corresponds to a large share of mostly small 

budgeted systems that do not correspond to a specific platform.  Largely, these are NBC 

systems, munitions programs, fire control systems not associated with specific platforms, 

threat warning devices, and joint effects modeling programs.  As has been stated before, 

there is evidence suggesting that the annual amounts allocated to each weapon system are 

dependent on each other.  However, the plot in Figure 13 does little to suggest a 

dependence relationship between any of the weapons systems.  Many of the programs, 

M1A1, M2A1, M2A2, Wolverine, are essentially flat.  This reflects a “level of effort” 

budgeting process.  This means that weapon systems are given a predetermined level of 

funding, without regard of the estimated work to be accomplished or other predictive 

measures.  Otherwise, there are not many comparisons that can be made within the data 

in the way it is presented.  However, a few inferences can be made, based on 

conversations with SMEs. 
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It was learned that the M1A2 and M1A2 SEP programs are essentially the same 

system.  Many of those budgeted programs simply changed names in 2005.  Accordingly 

the programs have been combined.  The Paladin is the most costly single system in the 

data set and it leads by a large margin.  After talking with several software maintainers, it 

is their opinion that the Paladin is the highest priority software system.  The suspicion is 

that the Paladin receives the budget it requests, and that other systems have their budgets 

reduced as a consequence.  Accordingly, the Paladin has been combined with the “ALL 

OTHERS” data line.  The result from these two changes is depicted in Figure 14. 
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Figure 14.   Annual Totals by Composite Weapon Systems. 

It is important to reinforce that the data necessary to support these assumptions is 

not contained in this thesis.  These inferences were made based on reasonable 

assumptions and conversations with SED professionals.  The resulting picture creates 

strong suggestions about what the data represents.  The M1A2SUM is relatively flat.  

Stryker budgeting, which doesn’t appear until 2007, appears to also flatten in the out-
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years.  It appears that by 2012, it has been determined that the Stryker and M1A2 

programs will be funded at the same amount.  Lastly, the combined Paladin/All Others 

summation follows a much more predictable pattern than either individual data plot in 

Figure 13.  This suggests that there is in fact a relationship between the two.  The 

suspicion is that Paladin, being the top priority, receives the desired amount of funding, 

while these other smaller systems suffer the fallout.  For many reasons, there is not 

enough evidence to suggest this is a definitive conclusion.  The budgets for the later years 

in the database, where Paladin funding decreases and All Others increase, have not been 

finalized.  The 155mm Crusader, which was designed to replace the Paladin, was 

canceled in 2002.  It is possible that the planned decreases in Paladin funding were 

intended to be sourced to the Crusader.  It is difficult to make valid suggestions about 

what the data represents for individual weapon systems until the budgeted years are 

finalized and executed. 
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IV. CONCLUSIONS AND RECOMMENDATIONS 

A. SUMMARY OF FINDINGS 

The first observation from our analysis of the data is that there is no difference, on 

a year-to-year basis adjusted for inflation, of the total resources budgeted for software 

maintenance for ground combat vehicles.  This means that there appears to be a set 

budget for software maintenance for ground combat vehicles.   

The second observation from our analysis of the data is that when the annual 

amounts spent for software maintenance for ground combat vehicles are adjusted for 

inflation by converting them to constant year dollars, these total amounts follow a simple 

linear regression, and the level of effort provided for overall program growth is growing 

at a constant rate.  As expressed in the data, this is estimated growth is $2.95 million 

dollars a year, or a 5.06% rate of growth.   

The third observation contrasts with our first that there is no difference of the total 

resources budgeted for software maintenance for ground combat vehicles.  That is, within 

a given year, there are stark differences in the amounts that different programs are 

allocated.  It appeared that, on an annual basis, the budgeting offices have different 

priorities for the different weapon systems, and these priorities show up strongly in the 

amounts allocated to each.  This is evident from two metrics which describe the data.  

First, it’s clear that specific software intensive systems require much more funding, as 

shown in Figure 15.  



 36

Pron Totals

0

20000000

40000000

60000000

80000000

100000000

120000000

15
5M

M

H
O

W
IT

ZE
R

JO
IN

T

M
11

3/
BM

P
-2

M
1A

1 
TA

N
K

M
1A

2

M
1A

2 
M

A
IN

T

M
1A

2 
S

E
P

M
2A

1/
M

3A
1

M
O

R
TA

R

P
AL

A
D

IN

P
AL

A
D

IN

R
EM

O
TE

S
TE

/IC
E

-R

TA
LO

N
 E

O
D

System

To
ta

l A
m

ou
nt

 C
Y0

5$

Pron Totals

  

Figure 15.   Annual Totals by Individual Weapon Sub-programs. 

The Paladin Self Propelled Howitzer, with its complex fire control system, has 

many sub-programs more expensive than the entire M1A1 software support.  This result 

is to be expected and, with more data about each program’s development, could be 

modeled in a significant way to inform decision makers of the expected support costs. 

Second, the most expensive programs are receiving a larger and larger share or 

the budget.  This result is best described by the increasing annual median.  The median 

appears to increase at a polynomial rate and more than doubles between the years 2002 

and 2012. 

From the observations above, we concluded that the amounts allocated to 

different programs within years are not independent.  If the total budget follows a fixed 

growth rate and there exists different priorities among the weapon systems, then 

fortifying one system cannot be performed without lessening the support for another. 

 



 37

B. SPECIFIC RECOMMENDATIONS 

There are many methods to reduce the life cycle costs of software intensive 

systems.  Software design should consider software maintenance in mind, since that is 

rapidly becoming where the lion’s share of the costs are incurred.  It is recommended that 

software support facilities be encouraged and funded to improve their processes.  Studies 

have shown that software engineering organizations with higher CMM ratings have a 

smaller percentage of code that needs to be reworked, receive fewer defective reports 

from consumers, and have a higher overall productivity while writing code [11].  

Research from software engineering centers and some rudimentary analysis of the 

database provide many areas to improve software efficiency.  In 2001, General Dynamics 

conducted an internal study in which quality, rework, and productivity performance were 

measured against CMM.  The results are detailed in Table 2.  

 

Table 2.   Performance vs. CMM Level. 
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Both CMM level and the other benchmarks were determined by internal metrics.  

In this study, the process improvements cannot be solely attributed to improving the 

CMM level.  Many of the organizations in the study had put in place initiatives beyond 

the recommended CMM levels.  SEI created a software initiative in late 2006 called 

Improving Processes in Small Settings (IPSS).  The leading research in the area suggests 

that process improvement should be an ongoing, as needed activity for software 

developers of any size.  A study profiling Infotech, a level 5 CMM developer, shows how 

the company was able to track productivity and size variation as a project team grew 

from 11 to 45 developers over an 11 month period [12].  The study concluded that the 

traceability Infotech provided served as valuable documentation for the maintenance 

phase. 

An example of where this is relevant to SEDs and the programs listed in the 

TACOM database is in regression testing.  For many software professionals, regression 

testing is an automated process by definition.  However, at TARDEC’s Next Generation 

Software Lab, such testing is still being performed by hand.  The specification to test a 

new version of code that runs on one of their weapon systems runs a few thousand pages. 

Most software is developed under a cost plus contract.  As of this writing, this is 

true of most if not all of the FCS software contract awards referenced in Appendix B.  

The vast majority of this software has not been completed yet.  In large part the contracts 

were awarded based on the contractors past performance, software design, and other 

credentials.  A simple solution to reduce development costs is to allow contractors to 

prototype and present their own solutions at a fixed price.  The government could then 

choose to buy or not to buy the software, depending on the interoperability, 

maintainability, and current relevance of the system.  This allows the government to 

procure more competitive bids for programs throughout the software life cycle. 

There are various lessons that are not supportable by the level of detail contained 

in the database, but have been learned by the subject matter experts (SMEs) performing 

PPSS on weapon systems today. 

• Constant improvement to all software processes should be made a priority 
by program offices.  Studies have shown that appropriate constant focus 
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on improving internal processes has a positive effect on software quality, 
productivity, and reduces rework.  Software intensive programs should 
invest in individuals trained in improving the software process and retain 
this knowledge for the life of the program.  Some SEDs have already 
trained and certified staff members in SEI’s Personal Software 
Process/Team Software Process.  But in speaking to the smaller software 
maintainers, they do not have this level of support, and process 
improvement is not seen as a priority by higher management. 

• It is recommended that software support budgets be maintained 
throughout the year.  This would be desirable of any program of any type, 
but it is more crucial in the case of software because the cost of 
interruption is difficult to quantify.  This is a problem that is not well 
encapsulated in the TACOM database since its figures appear in yearly 
increments.  However, from conversations with software professionals at 
the SEDs, this problem has known consequences.  Software maintainers 
know empirically what support can be provided, even given limited 
funding.  This is not a simple or linear process.  Given an amount of 
funding, managers make decisions on permanent hires, contracting work, 
quality assurance, and support personnel both in the home office and 
providing updates to warfighters.  Withdrawing 25% of the budget usually 
has a consequence larger than 25% of the expected effort.  Software 
facilities are often a convenient entity to stash or hide funds for later 
withdrawal for use on other program segments.  It is recommended that 
software budgets be maintained and not changed, in order to allow 
software engineers to better plan their processes and achieve more 
efficient use of budgeting dollars. 

• Recommend that the funding of software support become programmed 
into the life cycle of the weapon system as a separate entity from regular 
maintenance.  From a software professional’s perspective, there is no clear 
cut difference between software development and maintenance.  Software 
maintainers perform the same essential function as developers in the 
respect that they release new versions of the code, typically on an 18-
month cycle.  Yet custody of this critical technology is passed between 
entities with little transparency.  From a practical standpoint, these 
divisions derive from the reality that money comes from different sources.  
The manner in which the funding is provided currently, many systems are 
fully funded for software only until the hardware system is actually 
produced.  According to the SEDs, the software maintainers must wait 
until the system is a year out of production in order to receive Operation 
and Maintenance (OMA) dollars.  There are many program offices for 
which software is a critical technology, necessary for the program’s 
success.  To maintain continuity in the software effort, program offices 
should have a civilian manager ensure that software decisions are fully 
embedded in LCC considerations.  This position would also facilitate 
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rigorous software design and implementation [13].  An additional duty for 
this office is to preserve software data.  Only by placing such a person in 
the program office is it possible to answer key research questions about 
the software’s design and portability decisions, and what funding went 
into development, post development, maintenance, and improving process 
improvements. 

C. RECOMMENDATIONS FOR FUTURE RESEARCH 

Better data collection needs to be performed in order to make stronger inferences 

about the consequences of decisions in the life cycle of software systems.  This is largely 

outside of the scope of an individual researcher.  The Army’s OSMIS website has been 

promising software data, but this effort remains under development.  Even when the data 

has been completed, it has been indicated that the relevant metrics (SLOC, FP, 

productivity numbers, languages written) for building a data model will not be included 

in the near term [14].  Navy VAMOSC has some software data, but it is not easily 

retrievable, does not have a uniform breakdown, and does not contain metrics such as 

SLOC, function points, or project duration which are useful for formulating models.  

Valuable research could be performed analyzing the different software data methods 

between Armed Services, the relevance of metrics used to track progress and justify 

funding, and analyzing the effort it would require to create a Joint database on software 

LCC. 

It is recommended that a study be conducted to analyze the trade offs from 

decisions made throughout a software program.  The Aegis Combat System and Air 

Force F-22 Raptor programs are both desirable candidates for analysis, perhaps 

contrasted with each other.  A compelling study could be performed comparing the costs 

of the Stryker ATGM (with its embedded training system) against the Paladin, with its 

associated costs for training, simulators, and operating and support. 

Lastly, another study of interest would be to analyze and contrast the performance 

of the military and contractors as lead systems integrators (LSI) for large software 

programs.  In recent years contractors have taken on the role of LSI.  Boeing is the LSI 

for FCS.  The Northrop Grumman/Lockheed Martin partnership failed on the Coast 
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Guard Deep Water program, as did General Dynamics in producing the Marines’ 

Expeditionary Fighting Vehicle.  The use of contractors as LSIs is an interesting 

development because they all involve high dollar programs incorporating cutting edge 

technology.  It would be of interest to analyze the maturity of software under these failed 

programs, and what role, if any, software problems played in the failures. 
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APPENDIX A 

Historical Examples of Software Problems 
The city of Denver commissioned a new airport to be opened on Halloween 1993.  

One of the highlightshallmarks of the new airport was to be an highly automated baggage 

system.  BAE Automated Systems was awarded the $186 million contract to build the 

baggage handling system and code the software.  The system planned for 56 barcode 

scanners, 400 radio receivers, 100 networked computers, 4,000 independently operating 

carts, and 5,000 electronic sensors to implement the timely arrival of baggage.  The type 

and scope of these components is similar tonot unlike many distributed and networked 

systems currently being procured by DoD program offices.  In Denver, the baggage 

system was foreseen as the primary cost saver, allowing airlines to better plan their flight 

changes.  However, chiefly because of the baggage system, the airport opening was 

delayed 18 months until May 1995 at a cost of over $1 million a day [15].  By the time it 

opened, costs in delays had exceeded the original estimate for the entire airport and t.  

The baggage system was finally abandoned in August, 2005. 

Perhaps the most famous software failure was the first flight of the European 

Ariane 5 expendable launch system in June 1996.  The Ariane 5 had not been fully flight 

tested because of high confidence in modeling and simulation of flights.  As a result, the 

first flight carried $500 million worth of payload in satellites.   Shortly after liftoff a 

software error occurred.  A program segment using a decimal measurement attempted to 

convert the floating point number to a signed 16 bit integer.  However, the input value 

was out range of the software andi.e. because of the number of digits, it could not be 

represented as a 16 bit integer.  The run time error occurred in the active and backup 

computers, which both shut themselves down. The Ariane 5 lost all attitude control, 

started an uncommanded turn, and aerodynamic forces broke the vehicle apart.  A 

separate onboard monitor detected the breakup and ignited explosive charges to destroy 

the vehicle in air about 40 seconds after lift off [16].  The code that caused the error was 

reused from an earlier vehicle where the measurement couldn’t become large enough to 

cause this failure. 
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Great software successes are not as climatic as their failures.  In the early 1990’s, 

the on-board shuttle group became one of the first four developers worldwide to attain the 

highest Capability Maturity Model (CMM) rating, Level 5.  This group writes the code 

for NASA’s space shuttle and is a branch of Lockheed Martin.  Of 11 versions of the 

code that controlled the space shuttle during this period, just 17 total errors were detected 

in the code, which amounts to 420,000 lines in each version.  A commercial version of 

similar complexity would have had 5,000 errors [17]. 

This is not to suggest that certain programs are simply bad and that NASA should 

be the gold standard for software programs.  The Lockheed group’s annual budget at the 

time was $35 million for this one software program.  The group had 260 people working 

in support of it.  Documentation for the program ran 40,000 pages.  When the code 

actually runs on the shuttle, it uses four identical computers each running the same code.  

Clearly DoD can’t match NASA in terms of resources.  But the shuttle’s group 

excellence is a clear example of benefits reaped by improving the software process.  To 

better understand how to improve the software process for, first we must examine how 

software support is currently performed. 
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APPENDIX B 

Boeing functions as Lead System Integrator.  To develop software for FCS, 

Boeing has awarded contracts to Lockheed Martin [18], Raytheon [19], Science 

Applications International Group (SAIC which along with Boeing serves as Lead 

Systems Integrator for FCS), General Dynamics Robotics Systems (with Auburn 

University) [20], General Dynamics C4 Systems [21], BAE Systems [22], Curtiss Wright 

,[23], General Atomics [24] InstallShield, iRobot Corporation [25], Northrop Grumman, 

United Defense L.P., Boeing Mesa [26], Lockheed Martin Missiles and Fire Control [27].  

Additional software support comes from existing open source software designs such as 

Modeling Architecture for Technology, Research, and Experimentation (MATREX).  

Boeing has also named contractors that are developing supporting partners that will 

provide software to run services such as simulations, training, sensors, and integration: 

Austin Information Systems, Computer Science Corp, Dynamics Research Corp, 

Honeywell Defense and Electronic Systems, Northrop Grumman Mission Systems (along 

with the company’s divisions in Electronic Systems and Information Technology Defense 

Enterprise Solutions), Telcordia (an SAIC subsidiary), and Textron Systems [28].  

Testing support is being provided by Communications-Electronics Research, 

Development, and Engineering Center [29], Fort Lewis Electronic Proving Ground.  The 

Army’s Program Execution Office (PEO) Simulation, Training, and Instrumentation will 

also contribute by reusing existing components to help create the SoSCOE [30].  This list 

is not exhaustive.  Many contracts have yet to be awarded at this date.  Particularly absent 

are developers to build unmanned sensors, a key component that gives FCS its battlefield 

edge and lethality. 
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APPENDIX C 

The history behind the F-22’s software development is instructive.  It is a sizeable 

program, just entering full production.  Tthe F-22 program is highly software dependent.  

Lastly, the F-22 displays numerous preventable problems caused by a system’s software 

design.  When the F-22 contract was awarded in 1991, software development written for 

DoD was mandated to be written in the programming language Ada, under MIL-STD-

1815A [31] and later MIL-STD-2167A [32].  Ada is a high level language similar to 

C/C++ that came about specifically as the result of a DoD study to reduce the number of 

programming languages used in development of DoD software programs.  The “Ada 

law” was first implemented in 1987 and later revalidated as part of the annual Defense 

Appropriations Acts for fiscal years 1991, 1992 and 1993.  It simply stated that all DoD 

software must be written in the programming language Ada, where cost effective, unless 

exempted by an official designated by the Secretary of Defense.  The standards were later 

repealed in 1998, yet 80-85 percent of the avionics onboard the F-22 is still written and 

maintained in Ada. 

The F-22 has become well known for software failures.  The first Raptor 

prototype crashed in April 2002, after the contract had already been awarded.  The cause 

of the crash was determined to be pilot induced oscillations, which were attributed to a 

software error [33].  The program is still behind schedule, mostly do to it’s sophisticated 

software driven avionics.  Even after twelve years in development, in 2003 the software 

running the F-22 was crashing, on average, every three hours [34].  In late February 

2007, a flight of eight F-22’s were flying from Hickam Air Force Base to Okinawa, 

Japan.  Due to a software bug, upon crossing the international date line all eight aircraft 

dumped all computer systems.  They lost all navigation, communications, and some fuel 

systems.  The pilots had no internal attitude reference.  The flight of Raptors maintained 

visual contact with their tankers and returned to Hickam, where fortunately the weather 

was good.  The Air Force employed “tiger teams” to debug the code and the software 

problem was fixed within 48 hours. 
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The full procurement price on the Raptor is estimated at $34 billion, with an 

additional $28 billion sunk on the aircraft’s research, development, and testing.  The 

planned buy is 183 aircraft, $339 million each based on total program costs.  The 

incremental cost for a new Raptor is $120 million, but current required changes are 

expected to raise the cost to $166 million [35]. 

The Aegis Combat System is an interesting case study for many reasons.  It is a 

long standing program, highly software intensive, has been installed on numerous 

platforms, and has been extremely successful in terms of operational effectiveness and 

suitability.  In the 1960s the U.S. Navy began development on a program to defend its 

ships against anti-missile attacks.  The program was called Advanced Surface Missile 

System, but was renamed Aegis in 1969.  The Aegis is currently employed on 107 

surface platforms predominately for the United States, but also for the Japanese, 

Norweigan, Spanish, and South Korean Navies.  From a software perspective, the Navy 

program offices have recently made decisions over the Aegis’s life cycle which contrast 

with those of Army and Air Force programs. 

For many programs it is difficult to determine when development stops and 

maintenance begins.  One program that illustrates this consideration is the Stryker 

Armored Vehicle.  Formerly known as the Interim Armored Vehicle, the Stryker contract 

was awarded to General Motors/General Dynamics Land Systems (GM GDLS) in 

November 2000.  GM GDLS was a joint venture between General Motors, Electro-

Motive Division and General Dynamics Land Systems Division, specifically created for 

the sole purpose of developing the Stryker vehicle.  The Stryker was envisioned as an 

interim platform to bridge the gap between legacy armored personnel carriers and a new 

platform or family of vehicles for FCS.  This is evidenced by the acquisition plan of the 

weapon system, which was not held to normal procurement and production regulations.  

Because of this, many short-sighted production decisions were made to reduce short term 

costs.  For example, the Stryker initially had only two variants, the Infantry Carrier 

Vehicle and the Mobile Gun System.  By 2007, the Stryker had expanded to 10 different 

variations, the new ones being the Reconnaissance Vehicle, Mortar Carrier, 

Commander’s Vehicle, Fire Support Vehicle, Anti Tank Guided Missile (ATGM), 
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Engineer Support Vehicle, medical Evaluation Vehicle, and NBC (Nuclear, Biological, 

Chemical) Recon Vehicle.  It is significant that the Mobile Gun System variant was the 

second variant envisioned, but the last to be delivered.  Such development issues are not 

uncommon with weapon programs that utilize software dependent advanced fire control 

systems.  One such system is the Army’s 155mm self propelled howitzer is the M109A6 

Paladin.  According to the software support activity for the Stryker the ATGM variant 

has four times the software as the others, with over 1.2 million SLOC.   

Since it was developed as an interim vehicle, the program office did not buy the 

initial source code from GM GDLS.  Software for the Stryker chassis dynamics was 

written by General Motors Defense.  Software for the fire control system was written by 

General Dynamics.  The two contractors had different development teams working with 

different standards.  Complicating matters further, GDLS purchased GMD.  Much of the 

documentation on the chassis dynamics software was lost during this transition.  

Although they continue to purchase the old code, the software support facilities will 

likely never acquire the full software build for the Stryker. 

The Stryker is still in production.  The Army currently has over 1,780 Strykers 

and the current requirement plans for 2,691 vehicles incorporated into seven Stryker 

Brigade Combat teams.[36]  Some of the variants are five years removed from their 

initial operating capability.  While the program is still receiving full funding for 

production, undoubtedly software maintenance is being already performed on the various 

Stryker systems. 

The survivability of the interim and objective force’s lightweight vehicles 

(Stryker and FCS) is heavily dependent on information dominance.  This has been 

referred to as “trading armor for information.”  The ability to achieve real full-spectrum 

information dominance and lethality cannot be guaranteed, especially within the 

aggressive deployment schedule of FCS, hence the continued need for continually 

updated legacy systems.[37] 
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APPENDIX D 

Sample SPSS Clementine Results 
Clementine version 11.1 was used to analyze the validity of the categorical data in 

the TACOM PPSS spreadsheet.  It was determined whether we could simply predict if 

the budgeted amount fell above or below the median of the data set, from the remaining 

columns of data.  Output from Clementine is depicted in Figure 16.  Three models were 

used, a neural network, a regression tree, and a logistic regression (left, center, and right 

respectively).   

 

Figure 16.   Classification rates of Regression Tree, Neural Network, and Logistic 
Regression. 
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The results were as follows.  The logistic regression performed almost as badly as 

the naïve model, which would simply predict that every budgeted amount falls above the 

median.  The simple regression tree actually outperforms the neural network.  This 

suggests that a few variables are a better predictor for the median than a complex 

formulation.  After inspecting the values the regression tree branches to form leaf nodes, 

it appears that the location of the maintainers, funding, or supported activity.  This data is 

contained in many redundant columns with names such as FIA_WSS_CODE and 

ORG_CONT_CODE, depicted in Figure 17.  This result is supported by an inspection of 

the relative importance of the neural network variables, where many of them have no 

appreciable value to the model. 

 

 

Figure 17.   Sample Clementine Stream and Relative Importance of Inputs from the Neural 
Network. 
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APPENDIX E 

Tables of P-Values from T-Tests 
 The first table contains p-values comparing annual means between years 

contained in the data set.  No two years are found to be statistically different at the 95% 

level.  The second table compares the compounded percentage change between years.  

Year pairs that were found to have a greater than 5% change are highlighted. 

 
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

TOTAL 44,220,765 54,469,364 62,961,359 65,248,460 68,706,764 71,000,918 81,046,912 94,438,557 84,995,172 87,050,875 73,998,030 74,922,154
COUNT 33 45 44 54 57 58 64 71 70 72 54 56
MEAN 1,340,023 1,210,430 1,430,940 1,208,305 1,205,382 1,224,154 1,266,358 1,330,121 1,214,217 1,209,040 1,370,334 1,337,896

P-VALUES 2002 1.0000 0.7907 0.8675 0.7893 0.7800 0.8063 0.8748 0.9832 0.7823 0.7711 0.9486 0.9963
2003 1.0000 0.6623 0.9962 0.9908 0.9743 0.8941 0.7779 0.9926 0.9972 0.7052 0.7578
2004 1.0000 0.6621 0.6512 0.6729 0.7344 0.8366 0.6469 0.6356 0.9010 0.8460
2005 1.0000 0.9947 0.9706 0.8914 0.7768 0.9885 0.9986 0.7051 0.7570
2006 1.0000 0.9642 0.8825 0.7649 0.9823 0.9926 0.6913 0.7440
2007 1.0000 0.9163 0.7942 0.9795 0.9683 0.7177 0.7731
2008 1.0000 0.8735 0.8911 0.8784 0.7942 0.8539
2009 1.0000 0.7638 0.7498 0.9205 0.9842
2010 1.0000 0.9885 0.6842 0.7405
2011 1.0000 0.6694 0.7257
2012 1.0000 0.9339
2013 1.0000

RATES 2002 0.0000 0.1071 -0.0323 0.0351 0.0268 0.0183 0.0095 0.0011 0.0124 0.0115 -0.0022 0.0001
2003 0.0000 -0.1541 0.0009 0.0014 -0.0028 -0.0090 -0.0156 -0.0004 0.0001 -0.0137 -0.0100
2004 0.0000 0.1843 0.0896 0.0534 0.0310 0.0147 0.0278 0.0244 0.0054 0.0075
2005 0.0000 0.0024 -0.0065 -0.0155 -0.0237 -0.0010 -0.0001 -0.0178 -0.0127
2006 0.0000 -0.0153 -0.0244 -0.0323 -0.0018 -0.0006 -0.0211 -0.0148
2007 0.0000 -0.0333 -0.0407 0.0027 0.0031 -0.0223 -0.0147
2008 0.0000 -0.0479 0.0212 0.0156 -0.0195 -0.0109
2009 0.0000 0.0955 0.0489 -0.0099 -0.0015
2010 0.0000 0.0043 -0.0587 -0.0318
2011 0.0000 -0.1177 -0.0494
2012 0.0000 0.0242
2013 0.0000

P-Values RATES
Conditional Conditional

0.05 0.05
-0.05  
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APPENDIX F 

3-Parameter Gamma Distribution Graphs 
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